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Abstract

Static and dynamic fracture is analyzed in a DCB specimen considering shear deformation effects. The DCB

specimen is assumed to consist of two Timoshenko beams bonded together along a common edge except at the crack

surfaces and is subjected to two splitting forces. Because of symmetry, only one half of the model is considered. So, the

physical model of the problem consists of a Timoshenko beam lying on an elastic Winkler foundation. The problem is

solved analytically and the stress intensity factor is derived in the static case, in general. However, in a special case when

the uncracked ligament is large compared with the beam thickness, a simple closed form expression is derived for the

stress intensity factor. The results are compared with those cited in the literature and a good agreement is observed.

Finally, in the dynamic case, energy release rate and crack propagation velocity are derived and the effect of geometry

and material property of the DCB is studied on the crack growth velocity.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A test specimen for fracture mechanics investigation which is used extensively in both experimental and

analytical points of view, is the double cantilever beam (DCB) specimen (Fig. 1).

So far, several expressions for the stress intensity factor have been presented in the literature. In the

limiting case of a
h ! 1, Gilman (1959) has found a simple relation for K by elementary beam theory
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In the other limiting case of a
h ! 0, K approaches Irwin’s solution (1957) for the infinite sheet containing

an edge crack loaded by tensile concentrated forces
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Fig. 1. Schematic view of a DCB specimen.
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K ¼ P
b

2

pa

� �1=2

ð2Þ
Gross and Srawley (1966) extended the elementary beam solution for smaller values of a
h using a boundary

collocation technique and obtained the following relation for K
K ¼ 2
ffiffiffi
3

p Pa
bh3=2

1

�
þ 0:687

h
a

�
ð3Þ
But the major development in determining K from beam theory models was performed by Kanninen (1973)

by introducing a beam model which takes the region beyond the crack tip into account. In this model, as a

result of symmetry, the upper half of specimen will be regarded as an Euler–Bernoulli beam which is
supported by an elastic Winkler foundation (Kerr, 1964) with stiffness k at the ligament with length c,
shown in Fig. 2. Finally, the stress intensity factor for constant force conditions is found to be
K ¼ 2
ffiffiffi
3

p P
kbh3=2

ka
sinh2 kcþ sin2 kc

sinh2 kc� sin2 kc

� ��
þ sinh kc cosh kc� sin kc cos kc

sinh2 kc� sin2 kc

� ��
ð4Þ

1

where k ¼ 64

h
.

Fig. 2. Beam model of a DCB lying on Winkler support.
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Kanninen used the following simple relation for the foundation stiffness k
k ¼ 2Eb
h

ð5Þ
When the crack tip is far enough from the end of specimen ðc > 2hÞ, the solution for K (Eq. (4)) reduces to:
K ¼ 2
ffiffiffi
3

p Pa
bh3=2

1

�
þ 0:64

h
a

�
ð6Þ
Freiman et al. (1973) take a different method. In this method the beam is split into two parts: crack surface

and the elastic foundation part. An energy approach is used to establish the stress intensity factor. For the

first piece the energy due to shear stress is taken into account in addition to deformation due to bending of

the beam. For the analysis of the second piece, the classical problem of a beam on an elastic foundation is

used. The energy release rate for the whole specimen is determined by adding up the energy release rate of

both parts. Finally K is found to be:
K ¼ 2
ffiffiffi
3

p Pa
bh3=2

1

�"
þ 0:64

h
a

�2

þ 1þ m
6

h
a

� �2
#1=2

ð7Þ
where m is the Poisson’s ratio. The second term in (7) is due to the shear stress of the beam.

Foote and Buchwald (1985) assumed the DCB specimen loaded by splitting forces, to be a special case of

the arbitrarily loaded semi-infinite strip. This assumption is valid if the length of the uncracked ligament is

greater than 2h. The analysis is performed using the Wiener–Hopf technique, first used by Fichter (1983).
Finally, a simple approximate formula for K could be found which differs from the theoretical K values by

less than 1.1%:
K ¼ 2
ffiffiffi
3

p Pa
bh3=2

1

�
þ 0:673

h
a

�
þ P

b

ffiffiffiffiffiffi
2

pa

r
� Pffiffiffi

h
p

0:815 a
h

	 
0:619 þ 0:429
h i ð8Þ
Also, Kanninen (1974) has presented a formula for a DCB specimen, using a Timoshenko beam and a
Pasternak foundation (Kerr, 1964). But, his work suffers the following disadvantages:

First, Gehlen et al. (1979) showed that the torsional stiffness of the foundation springs vanish in an

‘‘augmented beam model’’. Therefore, Winkler foundation is a better way for modeling. Second, the results

are valid only when c > 2h.
In the present work, the problem of determining the stress intensity factor considering shear deforma-

tion, is investigated. A model which includes shear deformation effects is the Timoshenko beam theory. In

the determination of stress intensity factor, no assumption is made about the uncracked length c, which is

very important especially for studying specimens with deep flaws. However, a closed form solution is given
for the case of c > 2h which is very useful especially for comparing with the above-mentioned formulas

presented in the literature.

In the second part of this article, the problem of predicting crack propagation velocity in a pin loaded

DCB specimen is investigated. With the exception of the work of Kanninen (1973) and Bilek and Burns

(1974), which have been analytically developed, the other solutions use numerical methods (Kanninen,

1974; Malluck and King, 1977; Gehlen et al., 1979; Popelar and Gehlen, 1979). Kanninen (1973) studied the

problem of unstable crack propagation in a DCB specimen with fixed ends, considering a quasi-static crack

propagation. The results when compared with experiments, showed a twofold inadequacy. First, the pre-
dicted crack speeds were greater than real speeds. Second, the results did not predict the constant speed of

crack propagation.
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Here, the problem is solved supposing a quasi-static crack propagation. This hypothesis, according to

Baker (1972), is acceptable if the crack propagation velocity is less than 0:3C0, where C0 is the longitudinal

wave velocity propagation.

2. Formulation of the problem

The governing differential equation for a Timoshenko beam deflection wðxÞ is
EI
o4w
ox4

þ m
o2w
ot2

� J
�

þ EIm
jAG

�
o4w

ox2 ot2
þ Jm

jAG
o4w
ot4

¼ pðx; tÞ þ J
jAG

o2p
ot2

� EI
jAG

o2p
ox2

ð9Þ
where EI is the flexural rigidity of the beam; J and m, the rotary inertia and mass of the beam per unit

length; A, the cross-sectional area; G, the shear modulus and pðx; tÞ, the applied load on the beam.
In the static case, the above equation reduces to:
d4w
dx4

¼ p
EI

� 1

jAG
d2p
dx2

ð10Þ
where pðxÞ is the distributed load applied to the beam and j is shear deflection coefficient of the beam and

for a rectangular cross-section, according to Cowper (1966), is given by
j ¼ 10ð1þ mÞ
12þ 11m

ð11Þ
If the origin of coordinate is taken at the crack tip, then we have
pðxÞ ¼ �kwðxÞHðxÞ ð12Þ

where HðxÞ is the so-called Heaviside function defined by
HðxÞ ¼ 1; xP 0

0; x < 0



ð13Þ
The mathematical description of the model shown in Fig. 2 can be found by substituting pðxÞ into (10).

Thus, the governing differential equation for the beam deflection wðxÞ is
d4w
dx4

þ HðxÞ
�
� 2ð12þ 11mÞ

5h2
d2w
dx2

þ 24

h4
w
�

¼ 0 ð14Þ
In order to solve Eq. (13), the two intervals ð�a; 0Þ and ð0; cÞ are considered separately. In these two

intervals the differential equation (14) appears as
d4w1

dx4
¼ 0; �a6 x6 0

d4w2

dx4
� 2ð12þ 11mÞ

5h2
d2w2

dx2
þ 24

h4
w2 ¼ 0; 06 x6 c

8>><
>>: ð15Þ
The first equation can easily be solved to result in
w1ðxÞ ¼ r1
x3

6
þ r2

x2

2
þ r3xþ r4 ð16Þ
To solve the second equation, the characteristic roots should be found. After a lengthy calculation, the

roots are obtained as
D1;2 ¼ n 	 ig

D3;4 ¼ �n 	 ig



ð17Þ
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where
n ¼ ð24Þ
1
4

h
cos

1

2
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
600

ð12þ 11mÞ2
� 1

s !

g ¼ ð24Þ
1
4

h
sin

1

2
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
600

ð12þ 11mÞ2
� 1

s !
8>>>>><
>>>>>:

ð18Þ
Thus, the displacement function w2ðxÞ can be written as
w2ðxÞ ¼ enxðr05 cos gxþ r06 sin gxÞ þ e�nxðr07 cos gxþ r08 sin gxÞ ð19Þ

or in another form
w2ðxÞ ¼ r5 sin gx sinh nxþ r6 sin gx cosh nxþ r7 cos gx cosh nxþ r8 cos gx sinh nx ð20Þ

There are eight unknown constants in (16) and (20) which can be determined using four equations of

boundary conditions and also, four equations of continuity conditions at x ¼ 0. The boundary conditions

corresponding to a DCB specimen subjected to splitting forces P at the end of arms are
Mð�aÞ ¼ 0

V ð�aÞ ¼ P



ð21Þ

MðcÞ ¼ 0

V ðcÞ ¼ 0



ð22Þ
The continuity conditions at x ¼ 0 can be written as
w1ð0Þ ¼ w2ð0Þ
w1ð0Þ ¼ w2ð0Þ
M1ð0Þ ¼ M2ð0Þ
V1ð0Þ ¼ V2ð0Þ

8>>>><
>>>>:

ð23Þ
For a Timoshenko beam in the static case, the relations between the bending moment, shear force, angle of

rotation and the beam deflection can be given as
MðxÞ ¼ EI
d2w
dx2

þ EI
jAG

pðxÞ ð24Þ

V ðxÞ ¼ EI
d3w
dx3

þ EI
jAG

dpðxÞ
dx

ð25Þ

wðxÞ ¼ dw
dx

þ EI
jAG

d3w
dx3

þ EI

ðjAGÞ2
dpðxÞ
dx

ð26Þ
The details of determining unknown constants are unimportant and also very lengthy. However, the

resultant relations for the unknown constants are given in Appendix A.
3. The stress intensity factor in general case

The stress intensity factor is determined with the aid of compliance approach. If d ¼ w1ð�aÞ, then

d ¼ CP ð27Þ
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where C is the specimen compliance. The function u is defined as below
C ¼ d
P
¼ u

Eb
ð28Þ
The elastic energy of the whole specimen is twice that of the model, therefore,
U ¼ Pd ¼ P 2

Eb
/ ð29Þ
Hence
I ¼ 1

b
dU
da

¼ P 2

Eb2
d/
da

ð30Þ
From the relation K2 ¼ EI, we have
K2 ¼ P 2

b2
d/
da

ð31Þ
Since u is a function of both a and c, which are related together through the relation aþ c ¼ L, we can write
d/
da

¼ o/
oa

� o/
oc

ð32Þ
Fig. 3. Variations of the non-dimensionalized stress intensity factor as a function of c
h.
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Substituting Eq. (32) into Eq. (31), yields
K ¼ P
b

o/
oa

�
� o/

oc

�1=2

ð33Þ
Substituting for d ¼ w1ð�aÞ from Eq. (16) into Eq. (28), the function u can be computed. Replacing u into

Eq. (33) leads to a relation for the stress intensity factor, which is not given for the sake of brevity. The

resulting non-dimensionalized stress intensity factor, K bh3=2

2
ffiffi
3

p
Pa

is plotted in Fig. 3 as a function of c
h, for

different values of a
h. It is observed from Fig. 3 that the stress intensity factor becomes independent of c

h for

the values c > 2h. However, for small values of c
h, the stress intensity factor tends to infinity. This is because

the finite boundary at x ¼ c approaches the crack tip. On the other hand, it is seen from the figure that for

large values of a
h, the stress intensity factor approaches to that obtained by Gilman (1959), i.e., Eq. (1), as

expected.

A comparison between the present solution and Kanninen’s solution (1973) is shown in Fig. 4.

The difference is due to the effect of shear deformation. It is seen that this difference decreases as a
h in-

creases, a result which is in agreement with the fact that the less a
h values, the more shear deformation effects.

Fig. 5 shows the variations of non-dimensionalized stress intensity factor in the form K b
ffiffi
h

p

P as a function

of a
h for different values of

c
h. It is seen that the results are linear.

For the sake of comparison, the stress intensity factor is non-dimensionalized in the form K b
ffiffi
h

p

P and is

plotted versus a
h for different values of

c
h, together with Kanninen’s results (1973) in Fig. 6.

According to Figs. 3, 5 and 6, the influence of c is very strong when c < 2h, but the results are quite

insensitive to c when c > 2h. This point can lead to a simple and short relation for the case of c > 2h.
Fig. 4. Comparison of the present solution and Kanninen’s results (1973).



Fig. 5. Variations of the non-dimensionalized stress intensity factor as a function of a
h.

Fig. 6. Comparison of the present solution and Kanninen’s results (1973).
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4. Stress intensity factor for c>2h

Because of insensitivity of the results to the parameter c
h for the case c

h > 2, the beam model can be
considered to extend to infinity. So, in order to guarantee that the displacement is bounded for large values

of x, the constants r5 and r6 must be put zero in Eq. (19):
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w2ðxÞ ¼ e�nxðr7 cos gxþ r8 sin gxÞ; xP 0 ð34Þ

The boundary and continuity conditions are the same as (21) and (23). Therefore, the displacements can be

obtained by determining six unknown constants with the six above-mentioned equations to have
w1ðxÞ ¼
12P
Ebh3

x3

6

8<
: þ a

x2

2
�

2anðn2 þ g2Þ þ n2 þ g2 þ 2ð12þ11mÞ
5h2

ðn2 þ g2Þ2

" #
xþ

a 3n2 � g2 � 2ð12þ11mÞ
5h2

� �
þ 2n

ðn2 þ g2Þ2

2
4

3
5
9=
;
ð35Þ

w2ðxÞ ¼
12P
Ebh3

e�nx
a n2 � 3g2 � 2ð12þ11mÞ

5h2

� �
þ 2n

ðn2 þ g2Þ2
cos gx

8<
:

þ
an n2 � 3g2 � 2ð12þ11mÞ

5h2

� �
þ n2 � g2 � 2ð12þ11mÞ

5h2

gðn2 þ g2Þ2
sin gx

9=
; ð36Þ
The stress intensity factor can be found similar to the previous section. First, the function u is given by
/ ¼ 12

h3
a3

3

8<
: þ a

2anðn2 þ g2Þ þ n2 þ g2 þ 2ð12þ11mÞ
5h2

ðn2 þ g2Þ2

" #
þ

a 3n2 � g2 � 2ð12þ11mÞ
5h2

� �
þ 2n

ðn2 þ g2Þ2

2
4

3
5
9=
; ð37Þ
Substituting (37) into (33), leads to
K ¼ 2
ffiffiffi
3

p Pa
bh3=2

1

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
6

p þ 12þ 11m
60

s
h
a

!
ð38Þ
Fig. 7. Comparison between general relation and relation for c > 2h.



Fig. 8. Studying validity of the results for small values of a
h.
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It is seen that we arrive at a closed form relation for the stress intensity factor in this case, which depends on

the Poisson’s ratio of the specimen. A comparison between this relation and the stress intensity factor in

general case (results of the previous section) for c ¼ 5h, is shown in Fig. 7. It is clear that both equations

coincide completely, as expected.

In the present article, the obtained relations for the stress intensity factor are valid if the crack length

is big enough to treat the model as a beam. But as the Timoshenko beam model takes the shear
deformation into account, we know that the smaller the a

h value, the more the shear deformation effects.

Therefore, we expect that the range of validity of the obtained results is extended by the present solution

for the stress intensity factor. It was mentioned that Foote and Buchwald’s relation (1985) is valid for all

crack lengths. From Fig. 8, it is apparent that for smaller cracks, the discrepancy between Kanninen’s

solution (1973) and Foote and Buchwald’s gets higher but the present solution is valid for a greater range

of a
h.
5. Dynamic crack propagation

The DCB specimen is supposed to have an initial crack length of a0. As was mentioned in Section 1, the

problem of predicting crack propagation velocity is solved considering a quasi-static crack propagation.

Therefore, statical results of the previous section can be used. Substituting m ¼ 3
11
in Eqs. (35), (36) and (26),

yields
w1ðxÞ ¼
12P
Ebh3

x3

6



þ ax2

2
� ð0:8113ahþ 0:4541h2Þxþ ð0:2041ah2 þ 0:1656h3Þ

�
ð39Þ

w2ðxÞ ¼
12P
Ebh3

e�nx ð0:2041ah2
�

þ 0:1656h3Þ cos gx� ð0:4163ah2 þ 0:1283h3Þ sin gx
 

ð40Þ
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w1ðxÞ ¼
12P
Ebh3

1

2
x2



þ ax� ð0:8113ahþ 0:2041h2Þ

�
ð41Þ

w2ðxÞ ¼
12P
Ebh3

e�nx
�
� ð0:8113ahþ 0:2041h2Þ cosðgxÞ � ð0:6284ahþ 0:4163h2Þ sinðgxÞ

 
ð42Þ
In this section, the origin of coordinate is taken at the point where the force applies. Therefore, it is needed

to replace x with x� a. Thus, we have
w1ðxÞ ¼
12P
Ebh3

1

6
ðx



� aÞ3 þ 1

2
aðx� aÞ2 � ð0:8113ahþ 0:4541h2Þðx� aÞ þ ð0:2041ah2 þ 0:1656h3Þ

�
ð43Þ

w2ðxÞ ¼
12P
Ebh3

e�nðx�aÞ ð0:2041ah2
�

þ 0:1656h3Þ cos gðx� aÞ � ð0:4163ah2 þ 0:1283h3Þ sin gðx� aÞ
 

ð44Þ

w1ðxÞ ¼
12P
Ebh3

1

2
ðx



� aÞ2 þ aðx� aÞ � ð0:8113ahþ 0:2041h2Þ

�
ð45Þ

w2ðxÞ ¼
12P
Ebh3

e�nðx�aÞ�� ð0:811ahþ 0:2041h2Þ cosðgðx� aÞÞ � ð0:6284ahþ 0:4163h2Þ sinðgðx� aÞÞ
 
ð46Þ
The energy components and the work done during crack propagation can be computed using the following

relations
U ¼
Z 1

0

EI
ow
ox

� �2
(

þ jAG
ow
ox

�
� w

�2

þ Hðx� aÞkw2

)
dx ð47Þ

T ¼
Z 1

0

qA
ow
ot

� �2
(

þ qI
ow
ot

� �2
)
dx ð48Þ

W ¼ 2Pw1ð0Þ ð49Þ
The strain energy is then obtained by substituting Eqs. (43)–(46) into (47). After some mathematical

manipulations, we have
U ¼ P 2

Eb
1:9873



þ 7:899

a
h

� �
þ 9:7359

a
h

� �2
þ 4

a
h

� �3�
ð50Þ
Considering the following relations
owi

ot
¼ owi

oa
oa
ot

¼ V
owi

oa
; i ¼ 1; 2 ð51Þ

owi

ot
¼ owi

oa
oa
ot

¼ V
owi

oa
; i ¼ 1; 2 ð52Þ
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where V is the crack propagation velocity, the kinetic energy becomes
T ¼ 12
P 2

Eb
V
C0

� �2

1:2067



þ 8:8325

a
h

� �
þ 8:8325

a
h

� �2
þ 22:6818

a
h

� �3
þ 16:2265

a
h

� �4
þ 4

a
h

� �5�
ð53Þ
And finally, the work done during crack propagation can be obtained by substituting Eq. (43) into (49):
W ¼ P 2

Eb
3:9747



þ 15:7979

a
h

� �
þ 19:4718

a
h

� �2
þ 8

a
h

� �3�
ð54Þ
A statement of energy conservation is
½W ðaÞ � W ða0Þ� � ½UðaÞ � Uða0Þ� � T ðaÞ ¼ b
Z a

a0

RðaÞda ð55Þ
where R is the energy absorption per unit area during crack extension. In the present work, it will be

considered that R is constant during crack propagation. Thus,
R ¼ Rs; V ¼ 0

Rd; V 6¼ 0



ð56Þ
where Rs and Rd are the crack resistances against the extension in the static and dynamic cases, respectively.

Obviously, Rd < Rs for crack propagation to be possible.

Substituting Eq. (56) into (55), gives
T ðaÞ ¼ ½W ðaÞ � W ða0Þ� � ½UðaÞ � Uða0Þ� � bRdða� a0Þ ð57Þ
At the threshold of crack extension Rs must be equal to the energy release rate. Therefore, using Eq. (30), Rs

can be written as
Rs ¼
P 2

Eb2
d/
da

$$$$
a0

¼ 12P 2

Eb2
a0
h

�
þ 0:8113

�2
ð58Þ
Therefore, the last term of Eq. (57) can be written with the aid of Eq. (58) as
bRdða� a0Þ ¼ bða� a0Þ
Rd

Rs

12P 2

Eb2
a0
h

�
þ 0:8113

�2
¼ P 2

Eb
a� a0

h
7:899

�
þ 19:4712

a0
h

� �
þ 12

a0
h

� �2�Rd

Rs

ð59Þ
Substituting Eqs. (50), (54) and (59) into (57), leads to
T ðaÞ ¼ P 2

Eb
7:899

a� a0
h

� �

þ 9:7359

a2 � a20
h2

� �
þ 4

a3 � a30
h3

� �

� a� a0
h

� �
7:899

��
þ 19:4712

a0
h

� �
þ 12

a0
h

� �2�Rd

Rs

��
ð60Þ
Equating T ðaÞ from Eqs. (53) and (60), the crack propagation velocity can be obtained
V
C0

¼ A
B

ð61Þ



Fig. 9. Variations of the crack propagation velocity versus a
h for different r-values.
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where
A ¼ 7:899
a� a0

h

� �
þ 9:7359

a2 � a20
h2

� �
þ 4

a3 � a30
h3

� �

� a� a0
h

� �
7:899

�

þ 19:4712

a0
h

� �
þ 12

a0
h

� �2 Rd

Rs

��
ð62Þ

B ¼ 12 1:2067



þ 8:8325

a
h

� �
þ 22:6818

a
h

� �2
þ 27:3299

a
h

� �3
þ 16:2265

a
h

� �4
þ 4

a
h
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Fig. 9 shows the variations of the normalized velocity, V
C0
, versus a

h for a specimen with initial crack length of

a0 ¼ 0:1h. It should be noted that r in the figure is the ratio of the crack resistances in dynamic and static

crack states, i.e., r ¼ Rd

Rs
. It is observed that the crack velocity is a descending function as was predicted by

Malluck and King (1977). Also, the peak values of the crack propagation velocities are less than 0:18C0,

which is in agreement with the pre-assumption that in the V < 0:3C0 range, the problem may be treated as a

quasi-static one.
Appendix A

The values of unknown constants of Eqs. (16) and (20) for m ¼ 3
11
are as below
r1 ¼
12P
Ebh3

r2 ¼
12Pa
Ebh3
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P
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� 2
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15
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where A12, A13, A24, B12, B24 and B13 are
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4
ffiffiffiffiffi
15
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a
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Also A1, A2, A3, B1, A4, B2, B3 are
A1 ¼ �3 sin gc sinh ncþ
ffiffiffiffiffi
15

p
cos gc cosh nc

A2 ¼ �3 sin gc cosh ncþ
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p
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sin gc sinh nc
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